Module MATHS

Mothodology worksheet

Quadrangle constructions

Task:	In Geogebra software construct in the given half plane quadrangles and
	discuss the number of solutions in connection to the positive real parameter t .

- **Exercise 1:** Parallelogram ABCD: $a = 10 \text{ cm}, | \triangleleft BAC | = 45^{\circ}, |BD| = t \text{ cm},$
 - a) Solve for t = 8.
 - b) Solve with the positive real parameter *t* and hold a discussion.

Exercise 2 – for advanced students:

Trapezium ABC: a = 8 cm, v = 6 cm, |AC| = 7 cm, |BD| = t cm

- a) Solve for t = 8.
- b) Solve with the positive real parameter *t* and hold a discussion.

Procedure:

- 1. Copy the task into your school exercise book. Make a rough draft, write down the procedure of the construction for the target parameter *t*, construct and write the number of solutions in the given half plane.
- 2. In Geogebra software construct the solution of the task with the circle *k* defined by the centre B and the point (with the variable radius). Choose the radius of the circle *k* so that the circle has two intersections with the straight line as in exercise a).
- 3. V Geogebra software change the size of the circle radius and count the number of solutions and the individual shapes (acute-angled, obtuse-angled, right-angled triangle).
- 4. Write down into your school exercise book your observation in connection to the positive real parameter *t*, which shows the size of the radius circle *k*.

Mothodology worksheet

Methodological notes to solve the worksheet:

- you can add your rough drafts to solve the construction exercises on the board or assign the exercise for students in pair work
- accompany the work in Geogebra software with the collective construction on the board or on the interactive whiteboard
- discuss together the number of solutions in connection to the size of the parameter t

SOLUTION:

Exercise 1: Parallelogram ABCD: $a = 10 \text{ cm}, | \blacktriangleleft BAC | = 45^{\circ}, |BD| = t \text{ cm}$

- c) Solve for t = 8.
- d) Solve with the positive real parameter *t* and hold a discussion.

... two solutions parallelogram ABC_1D_1 , parallelogram ABC_2D_2

Mothodology worksheet

b) Discussion (number of solutions in the given half plane):

• $t \in \{5\sqrt{2}\} \implies 1$ solution

Question for students:

For what parameter *t* will this exercise have one solution?

Answer:

This exercise has one solution for parameter $t = 5\sqrt{2}$, because $|AD| = |BD| = |BC| = 5\sqrt{2} cm$, and for all parameters $t \ge 10$ (see below).

Module MATHS

Mothodology worksheet

SOLUTION:

- **Exercise 2:** Trapezium ABC:
 - a = 8 cm, v = 3 cm, |AC| = 5 cm, |BD| = t cm
 - a) Solve for t = 8.
 - b) Solve with the positive real parameter *t* and hold a discussion.

... one solution trapezium ABC_2D_1

Module MATHS

Mothodology worksheet

b) Discussion (number of solutions in the given half plane):

• $t \in (0; 5) \implies 0$ solution

• $t \in (5; x) \land x = |BC_1| = |BD_1| \Longrightarrow 1$ solution Question for students

Is it possible that ABC_2D_1 will be parallelogram and therefore this exercise won't have any solution? Answer:

NO, ABC_2D_1 is a parallelogram only, when $D_1 = C_1$, tzn. $|BC_1| = |BD_1| = x$ (see the next point).

(because $|BC_1| = |BD_1|$)

• $t \in (x; \infty) \Longrightarrow 2$ solutions Question for students:

Is it possible, that ABC_2D_1 or ABC_1D_1 will be a parallelogram and therefore will the exercise have just one solution?

Answer:

YES, quadrangle ABC_1D_1 will be the parallelogram in case, when $|BC_1| = |AD_1|$.

